Residual mitochondrial transmembrane potential decreases unsaturated fatty acid level in sake yeast during alcoholic fermentation
نویسندگان
چکیده
Oxygen, a key nutrient in alcoholic fermentation, is rapidly depleted during this process. Several pathways of oxygen utilization have been reported in the yeast Saccharomyces cerevisiae during alcoholic fermentation, namely synthesis of unsaturated fatty acid, sterols and heme, and the mitochondrial electron transport chain. However, the interaction between these pathways has not been investigated. In this study, we showed that the major proportion of unsaturated fatty acids of ester-linked lipids in sake fermentation mash is derived from the sake yeast rather than from rice or koji (rice fermented with Aspergillus). Additionally, during alcoholic fermentation, inhibition of the residual mitochondrial activity of sake yeast increases the levels of unsaturated fatty acids of ester-linked lipids. These findings indicate that the residual activity of the mitochondrial electron transport chain reduces molecular oxygen levels and decreases the synthesis of unsaturated fatty acids, thereby increasing the synthesis of estery flavors by sake yeast. This is the first report of a novel link between residual mitochondrial transmembrane potential and the synthesis of unsaturated fatty acids by the brewery yeast during alcoholic fermentation.
منابع مشابه
Variations in mitochondrial membrane potential correlate with malic acid production by natural isolates of Saccharomyces cerevisiae sake strains.
Research on the relationship between mitochondrial membrane potential and fermentation profile is being intensely pursued because of the potential for developing advanced fermentation technologies. In the present study, we isolated naturally occurring strains of yeast from sake mash that produce high levels of malic acid and demonstrate that variations in mitochondrial membrane potential correl...
متن کاملAnalysis of the Role of Mitochondria of Sake Yeast during Sake Brewing and Its Applications in Fermentation Technologies
© 2013 TERRAPUB, Tokyo. All rights reserved. doi:10.5047/agbm.2013.00301.0001 Abstract Mitochondrion is an organelle necessary for oxidative respiration. During industrial fermentation, brewery yeasts are exposed to long periods of hypoxia; however, the structure, role, and metabolism of mitochondria of brewery yeast during hypoxia have not been studied in detail. Our recent studies, for the fi...
متن کاملParameters affecting ethyl ester production by Saccharomyces cerevisiae during fermentation.
Volatile esters are responsible for the fruity character of fermented beverages and thus constitute a vital group of aromatic compounds in beer and wine. Many fermentation parameters are known to affect volatile ester production. In order to obtain insight into the production of ethyl esters during fermentation, we investigated the influence of several fermentation variables. A higher level of ...
متن کاملProduction and biological function of volatile esters in Saccharomyces cerevisiae
The need to understand and control ester synthesis is driven by the fact that esters play a key role in the sensorial quality of fermented alcoholic beverages like beer, wine and sake. As esters are synthesized in yeast via several complex metabolic pathways, there is a need to gain a clear understanding of ester metabolism and its regulation. The individual genes involved, their functions and ...
متن کاملEffects of Fatty Acids on Intracellular [Ca2+], Mitochondrial Uncoupling and Apoptosis in Rat Pachytene Spermatocytes and Round Spermatids
The aim of this work was to explore the ability of free arachidonic acid, palmitic acid and the unsaturated fatty acids oleic acid and docosahexaenoic acid to modify calcium homeostasis and mitochondrial function in rat pachytene spermatocytes and round spermatids. In contrast to palmitic acid, unsaturated fatty acids produced significant increases in intracellular calcium concentrations ([Ca2+...
متن کامل